skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sharada, Shaama"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 7, 2026
  2. Free, publicly-accessible full text available April 6, 2026
  3. ABSTRACT This study introduces a computational protocol for modeling the emission spectra of exciplexes using excited‐state ab initio molecular dynamics (AIMD) simulations. The protocol is applied to a model exciplex formed by oligo‐p‐phenylenes (OPPs) and triethylamine (TEA), which is of interest in the context of photocatalytic reduction of . AIMD facilitates efficient sampling of the conformational space of OPP3 and OPP4 exciplexes with TEA, offering a dynamic alternative to previously employed static methods. The AIMD‐based protocol successfully reproduces experimental emission spectra for OPP‐TEA exciplexes, agreeing with previous computational and experimental findings. The results show that AIMD simulations provide an efficient means of sampling the conformational space of these exciplexes, requiring less user input and, in some instances, fewer computational resources than multiple excited‐state optimizations initiated from user‐specified initial structures. The study also evaluates the yield of intersystem crossing (ISC) using AIMD and Landau‐Zener probability. The results suggest that ISC is a minor decay channel for OPP3 and OPP4. This work provides new insights into the structural flexibility and emission characteristics of OPP‐TEA photoredox catalyst systems, potentially contributing to improved design strategies for organic chromophores in reduction applications. 
    more » « less
    Free, publicly-accessible full text available February 5, 2026
  4. Reaction of poly(vinyl chloride) (PVC) with 5 equiv. of triethyl silane in THF, in the presence of in situ generated (xantphos)RhCl catalyst, results in partial reduction of PVC via hydrodechlorination to yield poly(vinyl chloride- co -ethylene). Increasing catalyst loading or using N , N -dimethylacetamide (DMA) as a solvent both diminished selectivity for hydrodechlorination, promoting competitive dehydrochlorination reactions. Reaction of PVC with 2 equiv. of sodium formate in THF in the presence of (xantphos)RhCl affords excellent selectivity for hydrodechlorination along with complete PVC dechlorination, yielding polyethylene-like polymers. Higher catalyst loadings were necessary to activate PVC towards reduction in this case. In contrast, reaction of PVC with 1 equiv. of NaH in DMA, in the presence of (xantphos)RhCl, exhibited good selectivity for dehydrochlorination, as well as much higher reaction rates. These results combined shed light on the interplay between critical reaction parameters that control PVC's mode of reactivity. 
    more » « less
  5. This work implements a genetic algorithm (GA) to discover organic catalysts for photoredox CO 2 reduction that are both highly active and resistant to degradation. The lowest unoccupied molecular orbital energy of the ground state catalyst is chosen as the activity descriptor and the average Mulliken charge on all ring carbons is chosen as the descriptor for resistance to degradation via carboxylation (both obtained using density functional theory) to construct the fitness function of the GA. We combine the results of multiple GA runs, each based on different relative weighting of the two descriptors, and rigorously assess GA performance by calculating electron transfer barriers to CO 2 reduction. A large majority of GA predictions exhibit improved performance relative to experimentally studied o-, m-, and p-terphenyl catalysts. Based on stringent cutoffs imposed on the average charge, barrier to electron transfer to CO 2 , and excitation energy, we recommend 25 catalysts for further experimental investigation of viability toward photoredox CO 2 reduction. 
    more » « less